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ABSTRACT 

The stochastic dynamic equations, as investigated in part I of this two-part study, can be applied t o  any time- 
dependent set of differential equations which are, at most, nonlinear quadratic. I n  this study, they are used t o  
explore various aspects of the question of atmospheric predictability. 

The growth of uncertainty due to  ill-defined initial conditions in the nonlinear advection field is viewed by consider- 
ing a simple barotropic model. A wave number is defined t o  be “unpredictable” when the “uncertain” energy associated 
with that  wave becomes as large as t h e  “certain” energy associated with it.  The predictability of wave number 12 is 
used as a reference point and as an arbitrary minimum requirement for useful synoptic forecasts. It is found that ,  
based upon the average root-mean-square vector error in the wind field today, such a wave number has a predictability 
value of about 1.5 days. If this error could be reduced by a factor of 4 (Le., down t o  1 m/s), this value would be 
approximately 5 days. Using a stochastic barotropic model with 2,015 degrees of freedom, it is found that  any initial 
energy spectra for the certain or uncertain eddy kinetic energy will give essentially the same predictability values. This 
is because the complete nonlinearity is accounted for in the stochastic dynamic equation set and the dynamics of the  
two-dimensional fluid tend t o  drive any initial spectrum into approximately a - 3  power law in some averaged sense- 
as expected from theory. 

It is shown that  the rather pessimistic predictability values, based solely upon error growth due to  uncertain 
advection and instability processes, are considerably lengthened (at least in the largest scales) when additional forcing 
and dissipation terms are included in the mathematical models. However, such additional forces can never be simulated 
perfectly and the qualitative effect of these imperfections is shown by calculations with a simple baroclinic model 
having heating and friction. Based upon arguments presented, the author speculates that  in 10 yr the projected uncer- 
tainties in the physics and the uncertainties arising from the computational wave number cutoff will still restrict the 
predictability of wave number 12 to  within 5-7 days. It is shown how the eventual application of the stochastic 
dynamic equations t o  more complicated models can replace such speculation with more concrete evidence. 

The globally averaged value of predictability considered above is very general and i t  is shown how the utility of the 
stochastic dynamic set can provide more meaningful information to  the user. Only one aspect of this utility is shown 
(the growth of the phase error of a wave with time), but the stochastic set of equations gives the “believability” of 
each variable at every point in the space-time domain. 

1. INTRODUCTION 

This study attempts to add to the theory of atmospheric 
predictability. The complete question of predictability, 
with its different meanings to different users, applied to 
various scales of atmospheric features, is not likely to be 
completely answered in the near future. Yet, the im- 
portance of knowledge about predictability cannot be 
stressed too much. The present volume and quality of 
observations that are useful for predicting the atmosphere 
are far from adequate. The quality of that data available 
in the next decade from the Global Atmospheric Research 
Program (GARP) mill stilI be far from adequate. It is the 
author’s opinion that, although the science of meteorology 
has grown tremendously over the past century, the ex- 
panding “economic effort” in observing the atmosphere 
has not kept pace with the expanding “economic value” 
in knowing what the atmosphere is going to do. 

The science of numerical weather prediction, that is, the 
application of computers to solve the mathematical equa- 
tions describing the physics of the atmosphere, forms the 
basis of nearly all statements about the future condition 
of the atmosphere. But, because the initial features of the 
atmosphere are so ill-defined in the “medium” or synoptic 
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scales and not defined at all in the smaller scales, the 
numerical forecast rapidly deteriorates. Now if, by a 
proposed increase of the observations with the purpose of 
better defining atmospheric features down to some arbi- 
trary scale, one could put a “dollar value’’ on the improve- 
ment of the forecast, then that would be justification for 
more observations. Improved observations alone, however, 
will not provide definitive statements about forecast im- 
provements. Because the equations are nonlinear and 
because the scales of features smaller than that chosen 
arbitrary scale would still not be known, only estimates 
of the improvement of the forecasts can be made. The 
nonlinear interactions between scales (known and un- 
known), coupled with physical forces which are not 
“perfectly” simulated, produce the uncertainty and make 
statements of predictability only “speculation” when the 
usual nioteorological equations are used. 

The stochastic approach to atmospheric prediction is 
capable of reducing that speculation of predictability. 
This approach was introduced by Epstein (1969) and is 
expanded upon in part I of this study (Fleming 1971). 

It was shown in part I that the general deterministic 
prognostic equation given by Lorenz (1963a) 
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can be considered a subset of the general stochastic set 
of equations 

and 

- ( b3prk lP + bkP73 l p  f l p r j k p )  - -73k  1 (4) 
P 

where 

( ’ )  refers to a time derivative, 
p and p are dummy indices, 
X i  is a dependent variable, 
pi is the mean of Xi, 
a i j  is the variance if i=j and covariance if i # j ,  
r i j L  is the instantaneous third moment about the 

a, b ,  c,  and K are constants. 
mean, and 

The closure of this set was discussed in part I. We 
shall also include calculations in this study that use the 
closure scheme of Epstein (1969) which simply assumes 
that third moments about the mean in eq (3) are zero, 
thus eliminating the need for eq (4). 

The spectral equations of a two-level model used to in- 
vestigate stochastic concepts were fully described in part 
I and are only repeated here for reference. These are 

where # is a stream function representing the mean wind, 
e represents the mean potential temperature, e* is a 
preassigned temperature field, and a, a’, a”, b ,  b f 1  b“, and 
c me constants. 

These quite simple equations, which are a particular 
form of the general form [e¶ (l)], wi l l  be used to illustrate 
various aspects of predictability that can be directly 
handled by the stochastic dynamic method. It would 
obviously be more desirable to use a more complicated 
set of deterministic equations, more representative of the 
atmosphere, as a basis. However, the limited computer 
power available to meet the computational demands of 
the stochastic dynamic equation set restricts us to this 
simple model, a t  least in this study. We might point out 
that Monte Carlo calculations, similar to  those described 

in part I, could have been used to investigate predict- 
ability. Approximate results, using a small sample size, 
could be obtained at less computer cost. However, this 
computational advantage is reduced when the uncertain- 
ties of the external forcing parameters are included in 
predictability calculations. This additional source of 
uncertainty is conveniently handled by the stochastic 
dynamic approach. Further, the stochastic approach is 
mathematically more elegant than the Monte Carlo 
(treating the low order moments as predictable entities 
rather than as indirectly computable quantities) and gives 
more accurate information on how the variables are 
related (unless a large sample size is used in the Monte 
Carlo calculations). 

4. BAR OUWOPK PR ED OCVA Ed I L OUY 

There can be so many definitions of predictability, based 
upon what is being forecast and how the forecast is being 
used, that no attempt is made to review these. The primary 
definition used in this study which most closely resembles 
the definitions of others (concerned with predictability of 
the atmosphere as a whole-stated in general terms or 
partitioned according to  scale) is that any atmospheric 
scale of motion, represented by a wave number, becomes 

unpredictable’’ when the uncertain kinetic energy be- 
comes greater than the certain kinetic energy; that is, 
when (UKE/KE) >l. All types of energy; certain and 
uncertain, are defined and described in part I. 

We should emphasize that this definition is related to  
the “precision” with which the mathematical model can 
specify the future position of an atmospheric feature in 
the space-time domain. However, there are a number of 
users of meteorologicial information who do not require 

precise” forecasts and who would perhaps base predict- 
ability on utility over an extended period in the time 
domain, thus arriving at  longer predictability times than 
given here. The stochastic equations would give perfect 
input into a particular utility matrix to arrive at  such a 
determination of predictability, but this topic will not be 
pursued here. 

The above definition is similar to  that used by Lorenz 
(1969). He considered the barotropic vorticity equation 

l l  

ii 

He then considered two separate fields of flow, $ and $ 4- e, 
for which the difference E is governed by the equation 

Lorenz then assumed that the “error,” 
compared t o  $ so that it was governed by 
equation 

am=-J(#, at V%)--J(E, v’#) 

E ,  was small 
the linearized 
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TABLE 1.-Barotropic predictability given by stochastic dynamic 
equations and by Lorenz (1969) 

Wave number Wave number Stochastic dynamic Lorenz (-513) 
source prediction 

until such time that E is not small. Lorenz considered a 
statistical ensemble of + and E, then using the linearized 
eq (9) he incorporated a number of assumptions to  arrive 
at  a single equation for the evolution of the error kinetic 
energy. 

Lorenz discussed these assumptions and realized their 
limitations. Some of the limitations of the method are 
assumptions of homogeneity and isotropy, the neglect of 
a prognostic equation for covariances, the use of a pre- 
defined energy spectrum function, and the use of the 
linearized error equation itself. The stochastic dynamic 
approach need not resort t o  any of the above assumptions 
although the question of closure must be faced. The 
stochastic dynamic equations will be applied t o  the 
barotropic vorticity equation and a comparison with the 
results of Lorenz will be given in table 1. 

The same barotropic vorticity equation used by Lorenz 
[eq (711 can be obtained from eq (5) by setting the O i  and 
b ,  equal to zero. There are, of course, many possible 
initial conditions that one could begin with. The calcula- 
tions in this study indicate that, at least as far as pre- 
dictability as defined here is concerned, the initial values 
of + do not make too much difference in the results. The 
purpose of numerical calculations in this study is to  give 
a qualitative indication of predictability based on “re- 
presentative” atmospheric values. I n  this section, our 
model still has only three longitudinal waves (usually 
all of low wave numbers). With this in mind, we 
simply choose initial values of I)( in such a way that, 
whatever set of waves is considered, each wave will have 
the same amount of certGn energy to begin with. The 
energy distribution between wave numbers will then 
evolve according to the dynamics. This energy adjust- 
ment takes place rapidly (as indicated in a later section) 
and has little effect on predictability here. The initial 
uncertain energy in a wave number will be a small per- 
centage (usually 1 percent) of the certain energy in the 
corresponding wave number. 

The initial conditions are arbitrarily chosen to  give 
typical values of the zonal flow and eddy amplitudes as 
might be found in the atmosphere at  500 mb. The initial 
energies per unit mass per unit area are: & = l O O ,  KE= 
100, UKz=l, and UKE=l. All energy values are in the 

units of mZ.s-’ per unit area. The zonal energy is split 
into 80 units in mode 1 and 20 units in mode 2. The 
variance of each component being 1/100 of its respective 
mean value results in a standard deviation of 10 percent 
for each component. Lorenz confined the error to a single 
wave (the smallest or largest with essentially similar re- 
sults) while this calculation has errors in all waves con- 
sidered. The details of Lorenz’ initial conditions would 
require an explanation of some of the assumptions and can 
be referred to in his 1969 paper. 

The model previously described in detail contained only 
three waves in the x-direction. Values of predictability for 
a given wave number are computed from two different 
sets where possible. Results for several waves are shown 
in table 1 with the predictability expressed in days. Direct 
comparison to  the results of Lorenz (1969) can only be 
made for certain wave numbers (his k=1, 2, 3, 4, 5, . . ., 
correspond to our wave numbers 1, 2, 4, 8, 16, . . .), but 
interpolation of his results for those wave numbers is 
sufficiently accurate for a general comparison. Lorenz con- 
sidered cases of the energy spectra obeying -513 and 
-7/3 power Iaws. However, to agree in initial root-mean- 
square velocity error, we must use the results from his 
application of the -513 power law. His experiment 
“C3” is in close agreement with our initial error. 

The results show that the stochastic dynamic predict- 
ability values are larger than those indicated by Lorenz. 
However, had Lorenz used a -3 power law that is deduced 
by Leith (1968) and observed in atmospheric data as 
shown by Wiin-Nielsen (1967) and by Julian et al. (1970), 
his predictability ranges mould be considerably longer. 
The stochastic approach allows for a nonlinear error 
growth. Thus, with uncertainty in the zonal flow, the 
barotropic instability mechanism accelerates error growth 
in some waves as discussed in part I. Such a mechanism 
is absent from Lorenz’ approach because of his assump- 
tions of homogeneity and isotropy. On the other hand, it 
was shown in part I that there is an energy Aom between 
certain and uncertain components that takes place in 
the stochastic dynamic model so that there is a feedback 
of uncertain energy into certain energy. This is from the 
stable waves which tend to slow down the error growth. 

The above calculations used the simple closure scheme 
of neglecting third moments about the mean in eq (3). 
I t  was shown in part I that this closure scheme does not 
accurately account for  internal uncertain energy transfer 
and eventually leads to  errors in the forecast of the mean. 
The eddy-damped quasi-normal closure scheme, described 
in part I and given by the complete set of eq (2)-(4), was 
used in an additional barotropic predictability experiment. 
Table 2 shows a comparison of results using the two closure 
schemes with the same initial conditions. There appears 
to be no systematic difference in predictability, a t  least 
as the term is defined here. However, in a later section we 
will view predictability from a different angle and we d l  
see a deficiency in the simple closure scheme. 

The deterministic vorticity eq (7) neglects the p-effect 
which is described in relation to the stochastic dynamic 
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TABLE 2.-Cmparison of simple closure (stochastic dynamic)  with 
eddy-damped closure (3-moment) in terns  of predictability 

Wave number Wave Stochastic dynamic 3-Mom ent 
source number 

f i = l O %  \ / z r = 5 %  d/Var=lO% 

TABLE 3.-Comparison of p-effect in terms of predictability for 
waves of mode 2 

Wave number Wave No @-effect included @effect included 
sourre number 

. \ / ~ = l o Y ,  G = 5 %  +G=lO% d/var=5% 

approach in part I .  With this included, eq (7) becomes 

where P=dj/dy;  f is the Coriolis parameter. The effects 
of the inclusion of this linear term are shown in table 3 
where the simple closure scheme has been used. It is 
seen that there is little difference in predictability when 
this is added. (Note that, of the two modes in the 
y-direction, mode 2 is shown in table 3.) 

3. ENERGY SPECTRA AND PREDlCBABlLlTY 
‘ Lorenz has used low-resolution spectral models quite 

successfully to  simulate many observed physical features. 
It is desirable to check the low-resolution model of only 
three waves against a higher resolution model with regard 
to predictability. An extension of the stochastic dynamic 
equations to  include more longitudinal wave numbers was 
performed. The expansion of dependent variables in terms 
of orthogonal functions was shown in part I’ where the 

TABLE 4.- Barotropic predictability 

Wave number Stodhastic dynamic Lorenz (-%) 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

(days) 
>7.0 
>7.0 

5 .5  
4.6 
2.6 
1 .8  
1 .6  
1.6 
1.6 
1.0 

(days) 
9 . 2  
4.8 
3 .7  
2.6 
2 . 3  
2.0 
1.7 
1 .4  
1.3 
1 .1  

functions were given by eq (11). These functions now 
become 

%lo= 1, 

+,,= 4 2 cos m;y/L, m= 1, 2, 

aVm=2 cos(nx/L)sin my/L, m=1, 2;  n=1, 2, 3, . . ., 15, 

and 

@‘)nm=2 sin(nz/L)sinmy/L, m=1, 2; n=1,  2, 3, . . ,, 

- 

15. 

(11) 

As pointed out by Lorenz (1963b, 1965), one can consider 
these waves to “represent” longitudinal wave numbers 2 
through 30 on the earth. The stream function $ is then 
expanded in these functions. Because of lack of computer 
storage, an extension to  the baroclinic model was not pos- 
sible. The extended barotropic model has 62 variables or 
62 ordinary differential equations (0.d.e.) in the deter- 
ministic form. The stochastic dynamic form of the equa- 
tions has 2,015 0.d.e. and includes nearly 400,000 non- 
linear terms. This is with no third moments. 

Table 4 shows results obtained from choosing initial 
conditions in the same may as for the results shown in 
table 3. Here, however, the values of KE and UKE are 
spread over all 15 waves. Where comparisons are possible, 
it is seen that there is not a significant difference between 
using the 3- or 15-wave model, although there is a tendency 
for slightly longer predictability times using the 15-wave 
model. 

The initial energy distribution in the above example is 
not realistic (equal energy in all waves), even though the 
dynamics of the model tend to  quickly produce a spectrum 
with approximately a -3  power law as would be expected 
from a two-dimensional system (Leith 1968). Thus, it 
seems that the certain energy transfer between wave 
numbers, combined with the instability mechanisms, tend 
to  drive any initial spectral state into a preferred state 
(preferred in some averaged sense by the dynamics of the 
system). In part I, the major growth of error was empha- 
sized as being due to  instability. The nonlinear transfer 
of energy between a triplet of wave numbers seemed to  
play a lesser role. To investigate this further, the following 
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TABLE 5.-Barotropic predictability 

Wave number A B C n 

(days) (days) (days) (days) 
2 >i. 0 >7.0 >7.0 >i. 0 
4 >7.0 >i. 0 >7.0 >i. 0 
6 6 .6  5.2 5 .2  5.4 
8 4.6 4.0 4 .0  4. 2 

10 . 2.6 3. 3 3 .3  3 .4 
12 1 .8  2.8 2.8 2.8 
14 1.6 2 . 4  2 .3  2 .3  
16 1.5 2 .0  1.8 1. 8 
18 1.5 1.7 1.6 1. 6 
20 1.0 1.6 1. 6 1.4 

section will consider different initial certain and uncertain 
energy spectra. 

We shall consider that the initial eddy kinetic energy 
in a wave number, KE (n), can be expressed as a func- 
tion of the longitudial wave number n in the following 
way: 

(12) K E  (n) = a .  n-b. 

Wiin-Nielsen (1968) has determined a and b by regres- 
sion calculations using atmospheric data. He found two 
different regimes for the energy spectra with the parti- 
tioning between the two taking place near wave 7. For 
the wave number range 1 5 n S 7 ,  he found values of b 
near )$. For the range 8 1 n 1 1 5 ,  he found values of b 
near 3. In  the following calculations, we assume that 
there is a set (a, b )  for each range and that, further, 
wave number 7 is an end point of the regression line for 
each set. We shall fix the value of b in the low wave 
number range and b for the higher range will be varied 
for each calculation. An appropriate value of a can read- 
ily be determined to give the total eddy kinetic energy, 
KE, that is desired. According to eq (ll),  (12), and the 
above assumptions, that total energy would be given by 

K,=a (5 n - b I + g  n=4 (3.5)bz-b1n-bz) (13) 
n = l  

where n is the integer used in eq (1 1) , 
b ,  is the low wave number power, and 
bz is the high wave number power. 

In our f i s t  experiment using eq (13), we use initial 
values of J. such that Kz = 100, UK, = 1, KE = 100, 
UKE = 1, 6 ,  = 0.3, and bz = 3. This case (hereafter 
referred to as B) has a -3 power law for the initial cer- 
tain and uncertain higher wave number energy spectra. 
Results are shown in table 5 along with the earlier results 
of the initial “zero” power law shown in table 4 (here- 
after referred to as A). Comparing A and B, we see that 
different initial energy spectra have little bearing on the 
magnitudes of the predictability values. The largest 
change in any of the wave number values was 0.6 day. 
However, one aspect is brought out by these calculations 
with the -3 power law. Those higher wave numbers in 
the group 2 6 tend to become unpredictable, collectively, 

a t  about the same time. That is, wave 20 is 0.6 day more 
predictable and wave 6 is 0.3 day less predictable. 

As another experiment, we use the same initial values 
as before but change bz to equal 513 in eq (13). This 
case (referred to  as C) has a -5/3 power law for the 
initial certain and uncertain higher wave number energy 
spectra. The results shown in table 5 indicate little differ- 
ence from B. Again, this merely points out that the 
dynamics of the system, including the barotropic insta- 
bility mechanism allowed by our choice of zonal flow, 
drive any initial state into a preferred state. 

The following experiment is designed to observe the 
reorganization of this uncertainty. The same initial values 
are used as in experiment B; however, the error kinetic 
energy is distributed according to  eq (12) rather than 
eq (13) with a +2 power law. The results of this case 
(referred to  as D) are shown in table 5 and it is seen that 
the predictability values are nearly- the same as those 
given by the -3 power law in B. However, the reor- 
ganization of each error spectrum changes as the fore- 
cast proceeds and these results are shown in figure 1. 
Initial and resulting spectra after each half-day are indi- 
cated, and are the sum of the two y-modes. Comparing 
the initial -3 spectrum on the left with the initial +2 on 
the right, we see that the error growth of the longer waves 
is slower and that the growth of the shorter waves is faster 
in the early stages of the -3 case. After 2 days, the two 
spectra have become verv much alike. 

The maximum uncertain energy is in the wavelength 
range predicted to be the most unstable from a linear 
analysis of barotropic stability (see Wiin-Nielsen 1961). 
The peak is at  n = 3  or appoximately wave number 6 on 
the earth-this corresponds to a wavelength of 4666 km 
at 45”N. In both cases, the uncertainty in the shorter 
wavelengths ceases to  grow and actually decreases. The 
results shorn the effect of the barotropic instability mech- 
anism on the behavior of this simple barotropic fluid and 
on the uncertainties involved in describing that fluid. 
The maximum uncertain energy appears in those un- 
stable waves with the greatest amplitude oscillation. The 
shorter the wave the sooner it becomes unpredictable pri- 
marily because of the uncertain advective influence of 
larger waves and the zonal flow. However, the uncertainty 
does not grow indefinitely. The dynamics of the fluid only 
permit the higher wave amplitudes to evolve into a rather 
restricted structure-the - 3 power law in some averaged 
sense. Thus, the variance is finite and is properly accounted 
for by the stochastic dynamic equations. 

Lorenz (1969) correctly views this end of the error 
growth as the error becoming as large as the difference 
between two randomly chosen states; this is essentially 
the same explanation as above. However, the linear treat- 
ment of the error growth by Lorenz (1969) does not 
account for the nonlinear feedback of uncertain to certain 
energy that occurs. Those waves which are barotropically 
stable tend to give up uncertain energy to the zonal flow, 
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TABLE 6.-Predictability for various m s  wind errors (mls) 

n n 

FIGURE 1.-Uncertain energy spectra a t  half-day intervals with 
initial - 3  power law (left) and initial 1-2 power law (right). 

counteracting and reducing the effect of the advective 
growth. A stage is eventually reached where the uncer- 
tainty is reduced as seen in figure 1. This discussion of 
certain-uncertain energy transfer and instability is noted 
in part I. 

4. PWEDDCBABlLOTY VERSUS RESOLUTION 
The present configuration of operational weather fore- 

casting is the so-called “man-machine mix.” Of those 
numerical products used to  aid man’s final forecast of 
large-scale sensible weather, still the most used is the 
numerical forecast of midtropospheric wave patterns. 
From these patterns (primarily including the 500-mb 
height forecast), man deduces the general position of 
weather producing systems and then adds his expertise 
and/or other numerical products to obtain the details of 
his forecast. On 500-mb maps, the six or seven large-scale 
wave patterns around the hemisphere are usually easily 
identified. However, the shorter scale waves (perhaps 
most closely characterized by wave number 12) are seen 
to  travel through the longer wave-train and these are 
the systems that can cause the forecast to be in error- 
producing sensible weather when none was expected and 
vice versa, or by significantly displacing the sensible 
weather several hundred miles. It would seem imperative, 
then, that the numerical forecast should at  least be able 
to accurately predict the position of wave 12. 

We realize that the accurate prediction of sensible 
weather a t  a precise point in the space-time domain would 
involve scales of features with considerably higher wave 
numbers. Further, for some applications there is utility 
in knowing only the phase relationships of the lowest 
order wave numbers. However, in the following we shall 

Initial error 4.0 2.0 1.0 0.6 0.26 

Wave number (days) (days) (days) 
30 0.0 0.8 1.8 
28 0.1 0.9 2.0 
26 0.2 1.0 2.2 
24 0.3 1.1 2.4 
22 0.4 1.2 2.6 
20 0.6 1 3  2.9 
18 0.8 1.7 3.4 
16 1.0 2.0 3.7 
14 1.2 2 4  4.2 
12 1.4 2.8 6.1 

(days) (days) 
4.0 9.0 
4.6 9.1 
6.0 9.2 
6.3 10.2 
6.6 11.7 
6.8 13.0 
6.0 14.0 
6.6 14.3 
7.9 14.6 
8.8 16.0 

confine our interest to the, synoptic wave ’numbers 12 
and greater and compare predictability values with 
decreasing initial error. This is merely of computational 
convenience to avoid long-term time integrations that 
would be necessary for wave numbers less than 12. 

The initial certain energy values are the same as 
before; that is, the average kinetic energy per unit mass 
a t  500 mb is taken to be 200 rn2 . s2  (100 in zonal flow 
and 100 in the eddy spectrum). The certain energy 
spectrum will be calculated from eq (13) with a -3  
power law and the uncertain spectrum from eq (12) with 
a zero power law. Previous calculations have specified 
the initial uncertainty a t  500 mb as an average uncertain 
energy per unit mass of 1 unit each for the zonal and eddy 
components. This would result in a root-mean-square 
(rms) vector wind error of 2 m/s or 4 kt. We shall consider 
now that the initial rms error is 4 m/s and shall succes- 
sively divide this error by 2 in a series of calculations and 
inspect the predictability values. In  the following calcu- 
lations, the initial values wil l  satisfy UKz= UKB. 

Table 6 shows the predictability values for the various 
waves. It is seen that halving the error tends to double 
the predictability times in the smallest wave numbers 
retained but that the predictability times for the larger 
wave numbers are not doubled. This effect was found by 
Lorenz (1969) and was clearly discussed by him. The 
transfer of error between scales with different doubling 
times reduces the predictability times in the larger scales. 
We see, for example, that reducing the original rms 
error by a factor of 4 increases the predictability of 
wave number 12 to 5.1 days rather than 5.6. 

The results in table 6 for the higher wave numbers are 
somewhat deceiving (being too optimistic), but have 
been included to emphasize a point concerning the prac- 
tical value of predictability. In  the atmosphere there is a 
cascade of energy and enstrophy (see Leith 1968) to the 
smaller scales. This cascade to higher wave numbers is 
hindered when the spectrum is arbitrarily cut off for 
computational reasons. If k, is the largest wave number 
for which amplitudes are computed, then there is a block- 
ing of the energy and enstrophy cascade, and a fictitious 
build-up occurs on wave numbers less than k,. 

Of those calculations giving the results shown in table 
6 ,  the calculations with extended integrations in time 
allowed this build-up to  reach significant proportions- 
even though the total energy was conserved to within a 
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small fraction of 1 percent. The resulting energy in the 
high wave numbers is too large, which, when coupled to 
the barotropic instability process, damps the error growth 
of the smaller, stable scales and extends predictability 
as defined here. Also, through nonlinear interactions and 
less relative energy in the unstable waves, this extra energy 
would tend to extend predictability throughout the spec- 
trum. Thus, the predictability values for the higher wave 
numbers with progressively smaller initial error are more 
indicative of a mathematically perfect model than of a 
two-dimensional fluid. . 

The problem of the computational cutoff has been dealt 
with in a number of ways by authors working in numerical 
modeling. For example, Leith (1971) “simulates” the 
natural cascade by introducing an artificial viscosity 
that is dimensionally consistent with the enstrophy 
cascade rate associated with the -3  power spectrum. The 
effect of these kinds of procedures on the practical value 
of predictability has not been considered. 

The inclusion of the artificial viscosity, which acts like a 
minor damping or frictional term, implies that something 
is being said about the physics of the model. Thus, a t  every 
time step, new knowledge is essentially being added. In  
part I, the effect of this “perfect” parameterization of the 
physics was discussed, and it was seen to damp the growth 
of error. The point is that this added artificial viscosity 
should not  damp the error growth, but should increase 
i t  because there is “uncertainty” in exactly how that 
damping term should be incorporated. More important, 
the damping is only based upon an energy spectrum, the 
correct spectrum to be sure, but this says nothing about 
the statistical influence on the phase of those wave 
numbers less than IC, by the wave numbers greater than 
IC,. However, one could add this uncertainty to the 
cascade simulation by adding another dimension to the 
N-dimensional phase space, giving the dimensionless 
coefficient in the viscosity term a variance (this approach 
was discussed in part I). This would give more realistic 
values of predictability versus resolution. 

5. PREDICTABILITY OF BAROCLINIC SYSTEMS 
The earth’s atmosphere is not a barotropic system, and 

any method of deducing the predictability of the atmos- 
phere based upon such a system is only an approximation. 
This section will consider stochastic predictability ex- 
periments using a baroclinic system, but we will first 
consider previous deterministic studies. 

Lorenz (1965) was the first to consider a baroclinic 
model of the atmosphere. He used the three-wave model 
that  has also been used in this study. Superimposed upon a 
basic solution, he considered solutions corresponding to 
small initial random errors. The method of deducing pre- 
dictability hinged upon a linear equation for the growth 
of errors that gave rise to “error matrices’’ which could 
readily be evaluated. The result,s of the calculations were 
amplification rates of error for various lengths of time at  
various periods within a 64-day forecast period. 

The important result of this pioneering effort was that 
the amplification of error was strongly dependent upon 

the circulation pattern. There were some 2-day periods 
where random errors actually diminished and others 
where it increased by a factor of three. Lorenz points 
out that there was one %day period where errors grew 
less than threefold, and another where they grew more 
than fortyfold. Depending upon the definition of a toler- 
able growth rate, the average predictability could be 
defined as a meek or a month. 

A purely numerical study of predictability in terms of 
the results of several simulation models of the atmosphere 
was described by Charney (1966). The question posed 
was how fast will a given error, interpreted as a perturba- 
tion of the atmospheric flow, grow before the perturbed 
motion differs from the nnperturbed motion by as much 
as the difference between two randomly chosen flows? 
The limit of predictability in this sense n7as found to be 
greater than 2 weeks. The results of this study have 
been widely referred to both within and outside of the 
science of meteorology. The emphasis put on these results 
is understandable in that there is a considerable amount of 
physics incorporated into these general circulation models, 
and they have been able to simulate many observed 
features of the atmosphere quite well. 

There have also been objections raised concerning the 
above method. Robinson (1967) feels these results give 
information about the models, but only limited infor- 
mation about the atmosphere. Lorenz (1969) agrees with 
Robinson that these values are too optimistic in that the 
effects of the smallest scales (having very short pre- 
dictability times) are not properly influencing the larger 
scales. The models use coefficients of turbulent viscosity 
and conductivity to introduce the statistical effect of 
unresolved smaller motion on larger scales. Lorenz points 
out that in such a model the only errors in the small- 
scale statistics are those resulting from an inadequate 
knowledge of the large-scale motions that determine 
them. This criticism is similar to what was said earlier 
about barotropic predictability with the spectral calcula. 
tions assumed to be correct. To simulate the difference 
between atmosphere and model, one must incorporate 
the limitations of the model and the computational pro- 
cedure in such a may as to generate uncertainty. 

This study has concentrated on the practical values of 
predictability. It is from this viewpoint that we question 
the results obtained from the simulation models. We 
realize that the intent of that study was to consider the 
long range limit of predictability since it was implicitly 
assumed that the physical processes of the atmosphere 
were perfectly known. However, results will be presented 
suggesting that even if the uncertainties of the small scales 
were accounted for by the simulation models, the assump- 
tion of perfect physics leads to far too optimistic pre- 
dictability times-at least in the largest scales. 

One is tempted to reject those pessimistic predictability 
values obtained from barotropic calculations because we 
know the atmosphere has a synoptic climatology. Various 
areas of the globe have definite weather “patterns” or 
“histories” which we have been able to explain (in whole 
or in part depending on the area) as being the result of 
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various external forces. One must concede that forced 
dissipative systems are more predictable than those which 
are not forced. At every time step of the calculation, you are 
adding new information. However, in a numerical calcula- 
tion, the last two statements are only true where those 
physical processes of forcing and dissipation are known 
and can be L‘parameterixedl’ in a perfect way. Since we 
do not know all the physics, nor will we be able to perfectly 
parameterize these processes for numerical models in the 
immediate future, it seems necessary to present numerical 
calculations that will include what these “projected” 
imperfections in the physics will mean in terms of pre- 
dic t abili ty  . 

I n  part I of this study, it was shown how uncertainties of 
various external parameters could be included in stochastic 
calculations. Each uncertain parameter could be treated by 
adding another dimension to phase space, , a d  it was shown 
how this addition affects the energy equations. Although 
only a brief qualitative look at  the resulting error growth 
was presented in part I, calculations here show the effects 
on predictability. 

. J KE 
1,200 6. PREDICTABILITY WITH UNCERTAIN FORCING 

The 28-variable two-level model, discussed in part I, 
is used in the following calculations; it is the same model 
used by Lorenx (1965) in his baroclinic predictability cal- 
culations described above. Lorens used 13:=3/32, h= 5/32, 
u=5/128, and considered waves 2,4,  and 6. We paints out 
that, if larger wave numbers had been used, there would be 
a mor4 rapid decay of predictability; on the other hand, the 
external parameters caused a faster than normal flow 
that, if reduced, would increase predictability. The values 
chosen by Lorenz gave the desired nonperiodic flow. 
Stochastic calculations were performed with many differ- 
ent initial values of the e,, and external parameters. 
The calculations shown here used values of the external 
parameters 0: and h that were 25 percent less than those 
used by Lorenz. This was done to achieve a flow more 
typical of the atmosphere and yet maintain a flow which 
was nonperiodic. The initial energy values are shown in 
figure 2. The energy “boses” contain realistic amounts 
except for A,, which is too large by a factor of about 2. 
This is discussed below. 

If the latitudinal heating parameter, e:, and tempera- 
ture gradient, e,, were reduced by a factor of 2, the 
resulting latitudinal temperature gradient would be in fair 
agreement with observations. Reduction of the static sta- 
bility, u, by a factor of 2 would leave its value in close 
agreement with that inferred from observations and used 
by Wiin-Nielsen (1970) in a similar model. Since the value 
of Az is given by 

AZ=e;/2a, (14) 

the effect of reducing and u by a factor of 2 is seen to 
reduce the energy by a factor of 2-in agreement with 

FJGURE 2.-Initial energy values for baroclinic predictability 
experiments. E is in kJ.m-*, fi is in lo-‘ kJ.m-2.s-1. 

observations. However, in using such values (along with 
many different combinations of these and other frictional 
parameters taken in combination with different sets of 
wave .numbers) we were not able to maintain realistic 
energy values for the other boxes. Wiin-Nielsen (1970) using 
this same simple model was able to obtain and maintain 
realistic energy amounts. However, the study by Wiin- 
Nielsen did not have explicit wave number modes, but 
rather had an eddy diffusion term to “simulate” the effects 
of all the longitudinal eddies. We conclude that our failure 
here is due not to the simple two-level model but to the 
use of only a limited number of modes. 

Our using the larger values of these parameters, as did 
Lorenz (1965), may not have significantly affected the 
results. Reduction of such parameters should not greatly 
affect the time scale of baroclinic instability. An equal 
decrease in A, and the stability tends to  have a canceling 
effect. However, there are indications that this strong 
forcing and the accompanying strong friction extend 
predictability times. This is discussed below. 

The primary forcing in the a.tmosphere is that of heating 
a t  the Equator and cooling at  the poles. This primary 
forcing, due to radiation processes, is taking place in 
wave number 0 as defined here. There is also significant 
heating in this wave number due to the release of latent 
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TABLE 7.-Baroclinic predictability experiments with primary 
forcing 

TABLE 8.-Baroclinic predictability experiments having secondary 
forcing and with primary forcing assumed perfectly known 

Adia- Primary Primary Primary Primary 
Wave number Wave batic forcing forcing forcing farcing 

Source number frit- &G=Io% & G = 5 %  4Gr=2.5% JvTr=o.o% 
tionless 

heat in the Tropics. Our simple model has simulated both 
of these effects by the heating parameter 8;. Baroclinic 
predictability experiments with this parameter uncertain 
are shown in table 7 where the initial conditions have 
already been described. It is seen that when the forcing 
is known perfectly, the stochastic dynamic predictability 
of wave 6 is over 2 weeks and that of wave 12 is about 
l O j 4  days. Again, as pointed out before and in part I, 
when the generation and dissipation are considered to be 
computationally perfect, there is a “drainage of uncer- 
tainty”-a tendency for the external forces to shrink that 
ensemble volume in phase space. When this forcing is over- 
emphasized (as is the case here), the predictability is 
unrealistically extended. This is quite obvious in table 7 
when the adiabatic frictionless case (with no forcing but 
with the same initial conditions) is compared with the 
last column having perfect forcing. The adiabatic friction- 
less case is even less predictable than the barotropic model 
because we have slightly increased the flow and added 
baroclinic instability without adding new information at  
each time step by saying something about the external 
forces. 

The above indications suggest that the results in table 7 
are too optimistic for those cases with forcing included. 
That we lose t’he benefit of precise quantitative values is 
unfortunate; however, this was due to the severely 
truncated model and not to the stochastic approach. 
The most important result indicated in table 7 can still 
be assessed-the influence of uncertainty in the param- 
eters on the values of predictability. It is seen that 
there can be significant reductions in predictability times 
depending upon the magnitude of the uncertainty. The 
results show a large difference between standard devia- 
tions of 10 percent and 5 percent. The current state of the 
art is probably such that the 10-percent value is appro- 
priate-with the latent heat contribution from the Tropics 
as the main source of uncertainty. In  this case, the 
predictability is only a week for wave 6. There is a tre- 
mendous motivation for continued research on this forcing 
because, if the standard deviation can be reduced to 5 
percent, the predictability increases by another 6 days. 
This gives further incentive to the deterministic “simula- 
tion” studies that are in progress which seem to provide 
the best research tool for pinpointing these parameters. 

Wave Secondary Secondary Secondary 
Wave number source number forcing forcing forcing 

d/var=zO% v’Var=lO% fir=O.Oo/, 

The effect of latent heat release in the synoptic scales as 
an additional forcing is crudely simulated here in order to 
further study predictability when the physics of models 
becomes more complex and realistic. Table 8 shows 
results when there is a very small forcing in wave 6 .  
The parameter e,* is considered to have the constant value 
1/90 but has an uncertainty as indicated. I n  obtaining 
these results, we assumed that the primary forcing was 
known perfectly, One sees that even though the forcing 
is small, the large value of uncertainty significantly lowers 
predictability. On the other hand, because the forcing is 
small, a stage is reached eventually where other sources 
of error dominate, and further reduction of the uncertainty 
of that forcing fails to lengthen predictability. 

7. PREDICTABILITY IN TERMS OF PHASE ERROR 

Our definition of predictability heretofore has been one 
of convention-related to ratios of uncertain to certain 
energy. There are perhaps more relevant ways of viewing 
the value of numerical models in terms of the information 
they provide. Useful information is the real goal of 
numerical weather prediction and this can take many 
forms. The stochastic set of equations provides not just 
the vector of N-unknowns (amplitudes of functions or 
grid point values), but also the complete covariance 
matrix of these unknowns and all combinations of 
third moments among the variables. How to usefully 
interpret this information is a topic in itself. The 
following will consider one method of using this in- 
formation and will apply that to the growth of phase 
error of hydrodynamic waves. 

The phase angle of a given wave can be seen directly 
on an x,y plane by plotting the amplitude of the cosine 
term along the x-axis and the amplitude of the sine term 
along the y-axis. The phase angle is then given by arctan 
(+J+J where +s and +e are the amplitudes of the sine and 
cosine respectively. 

The variances of these amplitudes and their covariance 
will grow from their initial values, and it is especially 
informative to use the curves called “ellipses of equal 
probability” (see Uspensky 1937) to study this growth. 
These curves are given by the equation 

449-Gl7 0 - 72 - G 
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FIGURE 3.-Error growth of wave 6 visualized throiigh ellipses 
of equal probability in the stable-unstable case. 

FIGURE 4.--Error growth of a wave from calculations with simple 
closure (top) and with eddy-damped closure (bottom) for days 
0 through 3. 

where ul, u2, and r are respectively variances of 2, y, and 
the correlation coefficient, and where 1 is a constant such 
that ( l -c2)  gives the probability that x,y are within 
ellipse E .  Equation (15) implies that the ensemble is multi- 
variate normal. In reality, small third moments are pres- 
ent because of nonlinear energy transfer and this method 
of display is a slight approximation. 

In  figure 3 the vector, whose length, R, is the amplitude 
of the wave, is drawn from the values of the means of 
the amplitudes of the sine and cosine of wave 6. The value 
of E has been chosen so that the probability is 112 that 
the vector is within the ellipse. I t  can be shown that the 
kinetic energy of the wave is proportional to the area of 
the circle with radius R. The kinetic energy in wave 6 of 
this barotropic model is given by 

Amplitude, R, is given by 

It follows that 

(18) K6=g.  4 (area of circle of radius R) 

The changing phase angle indicates the movement of 
the wave, and it is evident in figure 3 how the uncertainty 
in the phase of the wave is growing. In noting the orienta- 
tion of the ellipse, we see that we know the amplitude of 
the waves better than we know their phase. This was to 
be expected and is seen in today’s deterministic models. 
This is unfortunate from the user’s point of view in that 
usually he is more concerned with the “timing” of a 
weather system than its intensity. 

The cases shown in figure 3 were discussed in part I. 
They are three-wave barotropic cases where the initial con- 

clitions were exactly the same in each except for a sign 
change in the mode 2 zonal component that changed 
the barotropic instability criteria. The unstable case had 
more uncertain energy as discussed in part I, and this 
is evident in wave 6 of figure 3. However, the relative 
uncertainty is greater in the stable case. h/Ioreover, if 
lines are drawn from the origin tangent to the ellipse, 
the angle between such lines is about 90’ for the stable 
case and about 70’ for the unstable case. Thus, if one 
were concerned about the relative position of wave 6 in 
this simple model system, the unstable case would be 
more predictable from this point of view. 

A final topic to be considered here is the use of the 
above method of displaying phase error to look at  the 
effect of the simple closure scheme of Epstein (1969). 
In  part I, it mas shown that the closure scheme used by 
Epstein was congruent in the mean out to about 10 days 
and that the eddy-damped quasi-normal closure was 
similarly congruent out to 18 days. In  this paper, the 
predictability values using the two closure schemes 
(table 2) did not differ too much out to about a week-thus 
implying congruency in the second-moment terms in that 
time frame. We shall see below, however, that  the second- 
order congruency breaks down in the simple closure 
scheme sooner than anticipated. 

Figure 4 compares the two closure schemes in a case 
where the ellipses are shown for days 0 through 3 (results 
on top are for simple closure and results on the bottom 
are for eddy damping). Figure 5 is similarly orientated 
and shows results for days 4 through 7 .  In  figure 4 a t  
day 3, we see that the shapes of the ellipses are beginning 
to differ. The simple closure scheme gives an ellipse 
which is more elliptic (greater eccentricity). Figure 5 
shows that the eccentricity of the simple closure ellipses 
has increased. But it is seen that the eddy-damped 
ellipses do not exhibit this feature and, in fact, a t  day 7 



December 1971 Rex J, 

FIGURE 5.-Same as figure 4 for days 4 through 7. 

the ellipse is nearly a circle which is perhaps to be ex- 
pected as the wave vector becomes equally probable in 
any direction. What happens in the simple closure case 
is that the correlation coefficient grows unchecked and 
eventually becomes greater than 1 in absolute value. 
This, of course, is unrealistic and implies that the covari- 
ance matrix is no longer positive-definite. Some eigen- 
values associated with the covariance matrix will become 
very large while others become very small. This in itself 
is to be expected. If we start with no initial covariances 
among variables and cqual variance for each variable, 
then we have an N-dimensional sphere in phase space. 
Nom, as the dynamics of the two-dimensional fluid drive 
the eddy kinetic energy into the form of a -3 power 
spectrum in some averaged sense, the uncertain energy 
spectrum takes on a similar form. Thus, the original 
sphere loses dimensionality and becomes extremely elon- 
gated in a fern directions. While this effect might cause 
ellipses of equal probability to become elongated if wave 
components of two diJerent scales were used, i t  is not 
clear why the amplitudes of a sine and cosine of a single 
wave component would become elongated. 

The answer to the above failure lies in the results of 
part I. In  dropping third moments in the simple closure 
scheme, the uncertain energy transfer between uncertain 
energy forms is not allowed (see part I). This nontransfer 
occurs because the interaction between uncertain wave 
numbers obviously involves a third moment (a triplet of 
waves interact). Also, the interaction between the uncer- 
tain eddies and the uncertain zonal flow involves a triple 
product (barotropic instability). The simple closure scheme 
has a contradiction, then, of allowing nonlinear interac- 
tions between certain components and not among uncer- 
tain components. Specifically in this barotropic case, the 
energy transfer between zonal and eddy components de- 
pends entirely on velocity phase relationships-the con- 
vergence of the meridional transport of eddy westerly 
momentum. Thus, the ensemble wave-phase relationship 
with the zonal flow contains a contradiction when the 
associated third moment term is dropped. The time 
evolution of the covariance term relating sine and cosine 
of a wave is not consistent with the physics of the model. 

Fleming 937 

The use of these ellipses of equal probability in the 
above way is just a simple example of the many different 
ways that the predictability and “believability” of 
numerical forecasts can be viewed. 

8. SUMMARY AND CONCLUSIONS 

There are four points worth emphasizing in concluding 
this discussion of predictability. The first concerns pre- 
dictability results based on uncertainties in the initial 
horizontal wind field; that is, the results using the baro- 
tropic vorticity equation. Though the results of the 
specific linear approach of Lorenz (1969) were highly 
dependent upon the form of the energy spectrum, the 
results presented here show that any initial certain or 
uncertain energy spectra give essentially the same pre- 
dictability results. This is because the stochastic dynamic 
equation set is dynamically consistent; that is, they con- 
tain the complete dynamics of the two-dimensional fluid, 
and the fluid dynamics tend to drive any initial state into 
a -3 power spectrum (in some time-averaged sense). 

The second point is that there are indications that 
improvements in our knowledge of and parameterization 
of the physical processes of the atmosphere will lead to 
predictability times considerably longer than those given 
by barotropic experiments, a t  least in the planetary scale 
waves. This is because forced dissipative systems are more 
predictable than those which are not-at least when the 
forcing is known considerably well. However, those 
predictability times of the medium and smaller scales (e.g., 
the wave numbers greater than 12) may not improve 
significantly with improved physics. The uncertainties in 
the wind field are the primary source of error in these 
scales. The error growth due to advection, instability, and 
nonlinear cascade mill destroy predictability. The un- 
certain advecting influence of the zonal flow and of the 
low wave numbers, and the large errors accompanying 
instabilitj- (baroclinic and barotropic) will be sources of 
uncertainty from the low wave number side of the 
spectrum. The cascade down the spectrum of errors in the 
initial conditions of the smallest resolvable scales plus 
the additional sources of error generated by the computa- 
tional wave number cutoff , mill introduce errors from the 
high wave number side. Thus, increased predictability in 
the medium and smaller scales retained in a mathematical 
model must mainly come from a more accurate initial 
specification of the wind field. 

The third point is that, for predictability values to be 
of practical use in justifying observing systems, all sources 
of error must be taken into account. While forced systems 
are more predictable, there are uncertainties in the appli- 
cations of these forces. It was shown in this study and in 
part I, how the stochastic dynamic equation set can be 
used to include the external sources of error. In their 
present form, computations with the stochastic dynamic 
equation set are too demanding for today’s computers- 
for other than simple models. Yet, the simple qualitative 
calculations presented here indicate that those uncer- 
tainties in the forcing parameters will have considerable 
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impact on the practical prediction of sensible weather. 
These effects on predictability have not been eonsidered in 
a quantitative manner before, but i t  is necessary t o  con- 
sider them if any claims of predictability, or its economic 
impact, are to be taken seriously. However, for the sake 
of discussion in the absence of such quantitative data, we 
shall speculate on the predictability of wave number 12 
as it might be 10 yr from now. Though the rms vector wind 
error has a value of about 4 m/s a t  500 mb as a yearly 
average (verified agaipst selected rawinsonde ob- 
servations), we will assume that this will be reduced to 2 
m/s over the globe. Based upon barotropic results (see 
table 6) and baroclinic results with an uncertainty in the 
primary heating of 2.5 percent (see table 7))  we would then 
have a predictability range of about 3-8 days for such an 
initial error. The %day value is rather uncertain, with only 
the effect of uncertain zonal heating included, as was 
previously discussed. However, it is not likely that this 
value would increase too much in the next 10 yr from the 
inclusion of additional physics in this scale. The complex 
latent heat and radiation transfer processes occurring on 
this synoptic scale are a long way from being numerically 
simulated in a perfect manner. Yet, improvement in this 
area may ultimately be the most important factor in 
improving predictability (once the errors in the advection 
field are proportionately tolerable). Finally, the 3-8 day 
values were determined from computationally perfect 
models. The effect of the spatial truncation (on a grid or 
in spectral form) will be a source of error. The results shown 
in table 6 for high wa,ve number and small initial error 
serve as an example of the misleading results that can be 
obtained from neglect of this source of error. All things 
considered, we speculate a predictability range of 5-7 
days. We stress again that speculation is not a good bar- 
gaining tool and that more complicated stochastic dynamic 
calculations are necessary. 

The final point concerns the uses of the stochastic 
dynamic equations with regard to predictability. The 
introduction of this paper alludes to  the inability of the 
science of meteorology to establish precise cost-benefit 
ratios with regard to  observing systems. Using the 
stochastic equations for analysis and prediction and in 
conjunction with proposed observing systems, it is pos- 
sible to  far more accurately determine such ratios. But 
the use of the stochastic equations as an operational tool 
rather than as a research tool seems to  be their most im- 
portant advantage. The globally averaged value of pre- 
dictability that has been studied by others and included in 
this study has little meaning to a forecast user. His 
interest is in how good the environmental information 
that he has been given is-at the time he wants it and at  
the place he wants it, Knowledge of the uncertainty of a 
variable may be as valuable as the variable itself-de- 
cisions can be made from that knowledge. As we have 
seen, the growth of uncertainty depends upon many things 
and will vary from place to  place and from one period to 

another. This is what the stochastic dynamic equations 
provide: based upon the dynamic situation a t  a given time, 
the believability of each meteorological variable a t  any 
point in space and a t  any point in time is a predicted 
quantity. 
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